

Phasing (MR and experimental), density modification and map interpretation

Macromolecular Crystallography & Cryo-EM School

Instituto de Química-Física "Rocasolano", CSIC 10 May 2023

Tom Terwilliger
Los Alamos National Laboratory/New Mexico Consortium

X-ray and cryo-EM data and maps

X-ray and cryo-EM data → density map

X-ray and cryo-EM density map interpretation

Crystallographic and cryo-EM maps are similar in many ways

X-ray map (3.8 Å resolution)

Cryo-EM map (3.5 Å resolution)

X-ray and cryo-EM maps as Fourier transforms

(X-ray data are missing phases)

Many ways to find the phases in crystallography

Method	Source of phasing information
SIR – single isomorphous replacement	A few heavy atoms (e.g., Hg, Au) in "derivative" contribute to differences from "native"
SAD – single-wavelength anomalous diffraction	A few atoms (e.g., Se, I, Hg atoms) contribute to "anomalous" differences in diffraction between spot <i>h</i> and spot <i>-h</i>
MAD – multiple-wavelength anomalous diffraction	A few atoms contribute to anomalous and wavelength-dependent "dispersive" differences
SIRAS, MIR	Combinations of SIR and SAD
Molecular replacement	Molecular location and phases are found using a related molecule as a template
Direct methods	Guess where atoms are, good guesses match the measured structure factors

X-ray phases from molecular replacement

True structure

Incorrect orientation Correct orientation and location

and location

Molecular replacement

Two-stage search for orientation and position

Rotation search

Likelihood: probability of measuring these data if this rotation were correct, averaging over all possible translations

Translation search

Likelihood: probability of measuring these data if this rotation/translation were correct

Likelihood scoring

How likely is it that I would measure these data if this solution were correct?

Did MR work?

LLG: log-likelihood gain

How much better this solution explains the data than a random one. (LLG=50 or greater: usually correct)

TFZ: Translation function Z-score

How much better this translation is than average for this orientation (TFZ=7 or greater: usually correct)

Likelihood scoring

How likely is it that I would measure these data if this solution were correct?

Will MR work?

eLLG: estimated log-likelihood gain

Based on accuracy of model, number of reflections

(eLLG=50 or greater: usually can be solved)

Likelihood scoring

How likely is it that I would measure these data if this solution were correct?

Getting the most from MR

Collect the best data possible

Higher resolution helps

A better search model helps

The likelihood calculation is affected by crystal pathologies:

translational non-crystallographic symmetry

twinning

anisotropy of the data

MR can be combined with experimental phasing (anomalous data)

Obtaining experimental X-ray phases with Se-SAD

If we knew the phases (ϕ_h) we could calculate a map

 $\rho(X)$ (Where the atoms are)

 F_h is square root of measured intensity I_h of spot h

$$\rho(x) = \sum_{h} F_{h} e^{j\phi_{h}} e^{-2\pi i h x}$$

We do not know the phase (ϕ_h)

SAD phasing (single-wavelength anomalous diffraction)

If no anomalous scattering:

$$F_{hkl} = F_{-h,-k,-l}$$

Anomalous differences:

$$F_{hkl} \neq F_{-h,-k,-l}$$

Anomalous diffraction from Fe and S in HiPIP.

White pair: small difference. Red pair: large difference.

Holden et al., J.Biol. Chem 261, 14746 (1986)

Where do anomalous differences come from?

One reflection in Se-SAD: F_{hkl}

Protein: F_{protein}

Se atoms: F_A

Anomalous scattering from Se: F_{ano}

Total structure factor $F_{hkl} = F_{protein} + F_A + F_{ano}$

Key fact for anomalous scattering from one type of atom: phase of F_{ano} is always +90° from F_A

Where do anomalous differences come from?

Compare F_{hkl} and F_{-h-k-l}

Normal scattering: phase of F_{-h-k-l} is negative of phase of F_{hkl} for $F_{protein}$ and F_A

Anomalous scattering: phase of F_{ano} is always +90° from F_{A}

Length of F_{hkl} is different than F_{-h-k-l}

SAD phasing strategy

Key facts about anomalous differences:

Due to sub-structure of anomalously-scattering atoms

Depend on phase differences between structure factors for sub-structure and all other atoms

F_{-h-k-l}

Getting phases from anomalous differences:

Anomalous differences → sub-structure (Se atom positions)

Likelihood scoring: "How likely is it that I would measure F_{hkl} , $F_{-h,-k,-l}$ if this set of Se positions were correct?

Sub-structure and anomalous differences → phases for complete structure

Likelihood scoring: "Given this set of Se positions, how likely is it that I would measure F_{hkl} , $F_{-h,-k,-l}$ if this phase were correct?"

Will I find the anomalous substructure?

How many sites?

Are sites ordered?

Anomalous atom?

Wavelength?

Accurate data?

How many reflections?

Key steps in SAD structure determination

1. Find the substructure

Anomalous signal S_{ano}

2. Calculate an interpretable map

Anomalous correlation CC*_{ano}

Anomalous signal

1. Find the substructure

Anomalous signal S_{ano}

- Peak height in anomalous difference Fourier
- "Information per site"
- Substructure likely to be found if S > 10

Anomalous correlation

2. Calculate an interpretable map

Anomalous correlation CC*_{ano}

- Correlation of anomalous differences with ideal
- Accuracy of anomalous data
- Accuracy of phasing

Anomalous signal: key to finding substructure

Accuracy of the data

Anomalous correlation

Number of reflections

Anomalous signal S_{ano}

Will I find sites?

$$\langle S_{ano} \rangle = CC_{ano}^* \cdot \frac{\sqrt{N_{refl}}}{\sqrt{n_{sites}}} \cdot \frac{1}{f^{1/2}}$$

Number of sites

B-value for anomalous sub-structure

Map evaluation and improvement

What does a good electron density map look like?

Using expected features of maps to make decisions and to improve maps

Map evaluation and improvement

Which map is better?

Histograms of density have positive skew

Histograms of density have positive skew

Poor map (inverse hand)

Good map

Positive skew in good maps

Map improvement by density modification

What does a good electron density map look like?

Using expected features to improve maps (X-ray or cryo-EM)

Density modification = "phase improvement"

We know a good map when we see it

Noisy map

Clear map

Basis of density modification

Noisy map

Clear map

1. We know a good map when we see it

2. Improvement anywhere means improvement everywhere

Density modification

Noisy map

Identify local expected density

Find phases consistent with experiment and expected density

Clear map

Density everywhere is improved

One atom and a flat solvent region

A Fourier sum of sines and cosines

A Fourier sum of sines and cosines

Find out the phase of one Fourier term using:

1) All other Fourier terms

2) Flat solvent

A Fourier sum of sines and cosines

Using flat solvent to identify phase of one term

Density modification of real maps

Real world:

Correct phase $\rightarrow p_{map}(\varphi)$

Experimental phase information = $p_{exp}(\varphi)$

Density modification phase probability:

$$p(\varphi) = p_{exp}(\varphi) p_{map}(\varphi)$$

Incorrect phase

Correct phase

Key elements of density modification

Improved phases

$$p(\varphi) = p_{exp}(\varphi) p_{map}(\varphi)$$

We know a good map when we see it

Improvement anywhere means improvement everywhere

Density modification transfers information from one part of the map to another

Density modification with cryo-EM maps

Using expectations about one part of a map to improve another part of the map

flat

Automated model-building

Examples

- Shape-based identification of regular secondary structure
- Extension with short fragments from high-resolution structures
- Probabilistic sequence alignment

Finding regular protein structure

Extending with short fragments from PDB

Assembling best model

Identifying residue type at each position															1			
G	Α	Ø	٧	I	L	М	С	F	Y	K	R	W	Н	Е	D	Q	N	Р
6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1

#

Т

Inserting side chains based on sequence

Automated structure solution

phenix.autosol

Experimental data, sequence, anomalously-scattering atom, wavelength(s)

Find heavy-atom sites with direct methods or likelihood (HYSS)

Calculate phases (Phaser/Solve)

Improve phases, find NCS, build model (phase_and_build)

Decision to be made:

Multiple solutions, different derivatives or wavelengths

Alternative hands of space-group and substructure

Iterative map and model improvement

phenix.autobuild

- Resolve building
- Secondary-structure only
- Connect chains
- Fit loops
- Build outside model

Cryo-EM: Docking models

Search procedure:

Pure translation

- low-res
- high-res

Rotation / translation

- low-res
- high-res

Score based on rigid-body refinement map-model correlation

Cryo-EM: Docking models

Features

- Multiple chains
- Density search
- Symmetry
- Multiprocessing

Cryo-EM: Docking models

Resources

phenix-online.org

Phenix documentation

Tutorials with sample data

Video tutorials

Project

Lawrence Berkeley Laboratory

Paul Adams, Pavel Afonine,
Dorothee Liebschner, Nigel
Moriarty, Billy Poon,
Oleg Sobolev,
Christopher Schlicksup

University of Cambridge

Randy Read, Airlie McCoy, Rob Oeffner

Los Alamos National Laboratory New Mexico Consortium

Tom Terwilliger, Li-Wei Hung

UTHealth

Matt Baker

Duke University

Jane Richardson, Vincent Chen, Michael Prisant Christopher Williams,

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*.

Acta Cryst. 2019 **D75**:861–877